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Abstract
Aim: There has been a wide interest in the effect of biotic interactions on species' 
occurrences and abundances at large spatial scales, coupled with a vast development 
of the statistical methods to study them. Still, evidence for whether the effects of 
within-trophic-level biotic interactions (e.g. competition and heterospecific attrac-
tion) are discernible beyond local scales remains inconsistent. Here, we present a 
novel hypothesis-testing framework based on joint dynamic species distribution mod-
els and functional trait similarity to dissect between environmental filtering and biotic 
interactions.
Location: France and Finland.
Taxon: Birds.
Methods: We estimated species-to-species associations within a trophic level, inde-
pendent of the main environmental variables (mean temperature and total precipita-
tion) for common species at large spatial scale with joint dynamic species distribution 
(a multivariate spatiotemporal delta model) models. We created hypotheses based on 
species' functionality (morphological and/or diet dissimilarity) and habitat preferences 
about the sign and strength of the pairwise spatiotemporal associations to estimate 
the extent to which they result from biotic interactions (competition, heterospecific 
attraction) and/or environmental filtering.
Results: Spatiotemporal associations were mostly positive (80%), followed by random 
(15%), and only 5% were negative. Where detected, negative spatiotemporal associa-
tions in different communities were due to a few species. The relationship between 
spatiotemporal association and functional dissimilarity among species was nega-
tive, which fulfils the predictions of both environmental filtering and heterospecific 
attraction.
Main conclusions: We showed that processes leading to species aggregation (mix-
ture between environmental filtering and heterospecific attraction) seem to domi-
nate assembly rules, and we did not find evidence for competition. Altogether, our 
hypothesis-testing framework based on joint dynamic species distribution models 
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1  |  INTRODUC TION

Biotic interactions are an integral part of communities and have a 
profound effect in shaping diversity (Gaüzère et al., 2022; Ratzke 
et al.,  2020). These interactions take place at the level of indi-
viduals: negative interactions, such as competition (Cadotte & 
Tucker,  2017), result in decreased individual's fitness because of 
individuals of other species, whereas positive interactions, such as 
facilitation (Bruno et al.,  2003), result in increased fitness. These 
local effects have been shown to scale up, and shape species' oc-
currences at large spatial and temporal scales (Blois et al.,  2013; 
Bruno et al.,  2003; Cavieres et al.,  2014; King et al.,  2021; Wisz 
et al., 2013). Still, studying biotic interactions at these macroecolog-
ical scales has remained challenging as interactions are most often 
inferred from observational data on species occurrences, which are 
also shaped by other mechanisms (environmental filtering, dispersal 
and drift; Mutshinda et al.,  2009). Here, we present an approach 
based on time series of species abundances and functional traits for 
disentangling biotic interactions from environmental filtering at a 
community level to explore the prevalence of biotic interactions at 
large spatial extent.

An increasingly popular method for inferring biotic interac-
tions from observational data is joint species distribution model-
ling (JSDMs; Ovaskainen et al., 2017; Pollock et al., 2014; Thorson 
et al., 2015; Warton et al., 2015). JSDMs enable simultaneous mod-
elling of occurrences for multiple species, and produce ‘species-
to-species associations’ that are excess or deficits in spatial or 
spatiotemporal co-occurrence, relative to a baseline occurrence 
rate set by the environmental variables or a random occurrence 
(Dormann et al., 2018). Hence, they capture the component of vari-
ation in occurrence not explained by the environmental variables 
used as covariates and indicate whether an association between 
each species pair is negative (segregation), positive (aggregation) or 
random. These species-to-species associations are sometimes inter-
preted as indicating the direction and magnitude of biotic interac-
tions (D'Amen et al., 2018).

However, it is not straightforward to interpret species-to-species 
associations from JSDMs, even if the effect of environmental vari-
ables has been taken into account. First, it is widely known that 
exclusion of ecologically important abiotic variables may lead to 
obscure interpretation of species-to-species associations (Kissling 
et al.,  2012; Poggiato et al.,  2021; Warton et al.,  2015). Hence, 
negative associations may be due to different preferences for en-
vironmental characteristics rather than negative interactions, such 

as competition, and positive associations may still be due to similar 
preferences for environmental characteristics rather than positive 
interactions, such as facilitation. Second, the use of static snap-shot 
data from dynamic interactions may not represent biotic interac-
tions reliably (Dormann et al., 2018; Kilpatrick & Ives, 2003). JSDMs 
only allow modelling of spatial autocorrelation between species' 
occurrences, ignoring the temporal correlation structure (Dormann 
et al., 2018). Third, and perhaps most fundamentally, JSDMs model 
the biotic interactions solely in the residuals, and thus only retrieve 
the realized niche of species, while the fundamental niche remains 
uncovered (Poggiato et al.,  2021). In summary, the usefulness of 
JSDMs for inferring biotic interactions has been widely questioned 
(Barner et al.,  2018; Blanchet et al.,  2020; Poggiato et al.,  2021; 
Zurell et al., 2018).

A part of the solution for overcoming these issues is to use 
abundance instead of occurrence data, and studies of JSDMs have 
pointed out several times that abundance data should indeed 
provide more reliable inference on biotic interactions (Blanchet 
et al., 2020; Dorazio et al., 2015; Poggiato et al., 2021; see also Ulrich 
& Gotelli, 2010). This is because, for example, competition would be 
shown as decreased abundances of species with abundance data, 
which is a more realistic outcome of competition than total com-
petitive exclusion (i.e. species not co-occurring). Second part of the 
solution is to use time-series data on abundance. Indeed, temporal 
variation in species' abundances has been found to be an effective 
way to study the relative strengths of environmental variation and 
biotic interactions (Houlahan et al., 2007; Mutshinda et al., 2009). 
This is because temporal (co)variation in species' abundances re-
veals whether two species showing similar average abundances 
show high abundances at the same time, possibly reflecting positive 
interactions, or whether one has lower abundance when the other 
has a high abundance, possibly reflecting negative interactions. Time 
series of abundances can be studied via joint dynamic species dis-
tribution models (JDSDMs) (Thorson et al., 2016). In JDSDMs, the 
correlation structure between species within different time steps 
can be modified. For inferring biotic interactions, the most opti-
mal structure would be that the abundance of each species at time 
t directly depends on the abundance of other species at time t − 1 
(Sebastian-Gonzalez et al., 2010; Thorson et al., 2016), thus enabling 
a causal link in abundance variation between years (e.g. Barraquand 
et al., 2021). In practice, this is often computationally too demanding 
for communities with tens of species but even the more simplistic 
JDSDMs on abundance should yield more reliable inferences on bi-
otic interactions than static models.

and functional trait similarity is beneficial in ecological interpretation of species-to-
species associations from data covering several decades and biogeographical regions.

K E Y W O R D S
competition, functional traits, heterospecific attraction, joint dynamic species distribution 
models, macroecology, VAST
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Together with JDSDMs, species' functional and ecological 
traits may be used in building a supplementary modelling frame-
work with a priori predictions (Kohli et al., 2018; König et al., 2021; 
Mönkkönen et al., 2017; Snell Taylor et al., 2020). However, iden-
tifying the traits that reflect biotic interactions requires careful 
consideration. For instance, as species compete for food, traits 
associated with feeding ecology and behaviour may more di-
rectly represent the biotic interactions than some other traits 
(e.g. body size) where the association with interactions is only 
indirect. Therefore, methods where species with more similar or 
dissimilar functional or ecological traits are expected to interact 
more or less, respectively, than others (Elo et al., 2021; Schleuning 
et al., 2015) may improve interpreting whether associations from 
JDSDMs result from biotic interactions.

Here, we present a novel hypothesis-testing framework based 
on JDSDMs and functional trait similarity to dissect between bi-
otic interactions and environmental filtering. We demonstrate 
our framework by studying within-trophic-level interactions at 
large spatial grain and extent with long-term breeding bird data 
from France and Finland. In bird communities, species show both 
competition (Cody,  1974; Martin & Martin,  2010; Robinson & 
Terborgh, 1995) as well as positive interactions, such as facilitation 
(Martin & Eadie, 1999) within a trophic level. Also, birds may base 
their breeding site choice on information provided by an individual 
of another species (Parejo & Avilés, 2016; Seppänen et al., 2007). 
This so-called heterospecific attraction may result in positive spa-
tiotemporal associations between potential competitors (Kivelä 
et al., 2014; Mönkkönen et al., 1990; Thomson et al., 2003). Both 
negative and positive local-scale interactions among birds can scale 
up to and be visible at large spatial scales (Belmaker et al.,  2015; 
Gotelli et al., 2010; Heikkinen et al., 2007; Mönkkönen et al., 2017). 
By contrast, some other studies have found little support for bi-
otic interactions at large spatial scales (Dorazio et al., 2015; König 
et al., 2021; Royan et al., 2016; Sandal et al., 2022), at least when 
compared to environmental drivers and averaged over species (Snell 
Taylor et al., 2020). Hence, while environmental filtering clearly af-
fects bird community assembly, the importance of biotic interac-
tions among bird species at large spatial scales is still unclear.

2  |  MATERIAL S AND METHODS

2.1  |  Analytical framework

We build our framework on abundance-based JDSDMs and informa-
tion on species functional traits. From JDSDMs, we derive spatial and 
spatiotemporal associations among species' abundances (Figure 1). 
Spatial associations estimate covariance in species' abundances, 
averaged across years, that are not explained by the environmen-
tal variables included in the model. They roughly correspond to the 
classical residual covariances of JSDMs. Spatiotemporal associations 
represent the covariation in abundances in space and time not cap-
tured by the spatial covariance. Thus, while spatial associations are 

likely to capture the effect of shared responses to missing environ-
mental variables, the spatiotemporal associations may carry the sign 
of biotic interactions.

Using a phylogeny and functional traits to separate environ-
mental filtering and biotic interactions is not straightforward as the 
two mechanisms may produce similar patterns in relation to phylog-
eny and functional traits, especially when studying co-occurrence 
(Cadotte & Tucker, 2017; Mayfield & Levine, 2010). In our framework, 
we develop hypotheses for environmental filtering (H1) and biotic 
interactions (H2) which predict unique combinations of (i) the pres-
ence of negative spatiotemporal associations, (ii) the slope and (iii) 
heteroscedasticity in the relationship between spatiotemporal asso-
ciation and species functional dissimilarity (Figure 2). Environmental 
filtering leads functionally similar species to have the strongest pos-
itive spatiotemporal associations and dissimilar species to have the 
strongest negative spatiotemporal associations (H1). Thus, the slope 
of the relationship between spatiotemporal associations and func-
tional dissimilarity is predicted to be negative (Figure 2). Biotic inter-
actions, on the other hand, lead to different predictions depending 
on whether we consider negative interactions such as competition, 
positive interactions, such as heterospecific attraction, or both. 
Competition (H2a) predicts that species' spatiotemporal associations 
are negative and given that similarity of the functional traits triggers 
competition, the negative spatiotemporal associations are strongest 
between functionally similar species (Beaudrot et al.,  2019; König 
et al.,  2021; MacArthur & Levins,  1967). This results in a positive 
slope between spatiotemporal association and functional dissimilar-
ity (Figure 2) which is a unique prediction for competition and not 
predicted by environmental filtering, although otherwise their ef-
fects may be hard to discern (Mayfield & Levine, 2010). By contrast, 
heterospecific attraction predicts similar species to have the stron-
gest and positive spatiotemporal associations and dissimilar species 
to have random spatiotemporal associations (H2b). This is because 
heterospecific attraction is based on information (e.g. suitable nest-
ing site) acquired from other species, and the information value de-
creases with increasing ecological distance (Seppänen et al., 2007). 
We note that the resulting negative slope between spatiotemporal 
association and functional dissimilarity is also predicted by envi-
ronmental filtering (H1a, Figure  2). Together competition and het-
erospecific attraction result in similar species to have the strongest 
spatiotemporal associations, either positive or negative, whereas 
dissimilar species have random spatiotemporal associations (H2c). 
Consequently, the heteroscedasticity of the spatiotemporal associ-
ations decreases with increasing functional dissimilarity (Figure 2).

Finally, the relationship between spatiotemporal association and 
functional dissimilarity described above applies to species with posi-
tive spatial associations but not for species with random or negative 
spatial associations, and this holds for both environmental filtering 
and biotic interactions (Figure 2). If species' spatial associations are 
positive, they are more likely to be present in the same habitats, and 
thus the potential for direct interaction is high or the species are 
more likely to use the same resources. By contrast, with random 
or negative spatial associations, probability of direct interactions 
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and using same resources decreases because the probability of co-
occurrence decreases, and the pattern dilutes.

2.2  |  Field data

We used annual census datasets for terrestrial birds collected dur-
ing 2001–2017 in France (the French Breeding Bird Survey, FBBS; 
Jiguet et al., 2012) and 1984–2018 in Finland (the Finnish Museum 
of Natural History, LUOMUS; Koskimies & Väisänen, 1991). The data 
consist of point counts collected by experienced volunteer ornithol-
ogists. In France, 2000 permanent 2 km × 2 km census plots are ran-
domly distributed over four biogeographical regions in continental 
France (Atlantic, Continental, Alpine and Mediterranean regions; see 
Appendix 1, Figure S1.1). Each plot contains 10 points, each consist-
ing of only one habitat type within a radius of 100 m, and a minimum 
distance of 300 m between points (Jiguet et al., 2012). The points are 
sampled twice (April–May, May–June) during the breeding season 
(Jiguet et al., 2012). In Finland, a census route consists of 20 points 

that are sampled once in May–June (Koskimies & Väisänen,  1991; 
Laaksonen & Lehikoinen, 2013; Appendix 1, Figure S1.2). Each point 
consists of only one habitat type within a radius of 50 m, and they 
are located a minimum of 250 or 350 m (in forests and open areas, 
respectively) apart from each other (Koskimies & Väisänen,  1991; 
Laaksonen & Lehikoinen, 2013).

2.3  |  Data preparation

Our goal was to dissect biotic interactions from environmental 
filtering. Hence, we aimed for removing the most obvious envi-
ronmental factors causing variation in abundance among species. 
First, we divided the French data into four biogeographical regions 
(Atlantic, Continental, Alpine and Mediterranean) according to 
European Environment Agency (www.eea.europa.eu/) and similar to 
Barnagaud et al. (2012). These regions coincide closely with previous 
studies (e.g. De Heer et al., 2005) of breeding birds at biogeographi-
cal scale. We further divided the two largest regions into Northern 

F I G U R E  1  A simplified figure showing the difference between spatial and spatiotemporal associations between species. The data include 
abundances of three species (A, B, C) in 3 years and three sites (panels a, e; b, f; c, g). Spatiotemporal association reflects the spatiotemporal 
correlations among loge-transformed abundances of species (panel d). Here, species A and species B have strong positive spatiotemporal 
association, whereas species C is negatively associated with the other two species. However, when averaged across years (panels e–g) the 
loge-transformed abundances of the three species are highly positively correlated, and consequently, the spatial associations of all species 
pairs are positive (panel h). Here, the spatial and spatiotemporal associations are simply calculated as correlations between loge-transformed 
abundances, whereas our multivariate spatiotemporal delta model (VAST) uses a latent variable structure on the explicit spatiotemporal data 
to estimate the associations, while taking into account the environmental variables used as covariates.
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and Southern parts (Atlantic, split latitude 47.8°N; Continental, split 
latitude 46.9°N), containing approximately equal numbers of sam-
pling points (Appendix 1, Figure S1.1). We did not divide the Finnish 
census because it is situated entirely within the boreal region and 
the number of observation points is relatively low in comparison to 
the French data. Second, we divided these seven datasets based on 
two major habitat types dominating the two countries: farmlands 
and forests. Because many terrestrial bird species are specialized to 
either open or forest habitats (Julliard et al., 2004), this provides a 
natural delineation of two distinct communities. This resulted in al-
together 14 datasets.

For both habitat types, we only included the terrestrial spe-
cies breeding and/or foraging in farmlands and forests, separately, 
according to delHoyo et al.  (2014). We excluded birds of prey and 
grouse, as the point count method used is not reliable for counting 
them (Andersen, 2007; Pakkala et al., 1983). Therefore, we consider 
the data to represent within-trophic-level associations. In the French 
data, the censuses were done twice per year, and the maximum num-
ber of individuals for each species in each point and year detected 
between the two censuses is considered as a proxy of the local 
abundance for that species on that point. In Finland, only one census 
per year was conducted because breeding is more synchronized due 

to the short breeding season at high latitudes. Each observed bird, 
pair or brood is considered as a breeding pair in the Finnish survey 
(Koskimies & Väisänen,  1991). Hence, we multiplied the observa-
tions by two to obtain the number of breeding adult individuals.

2.4  |  Environmental variables

We obtained mean temperature (°C) and total precipitation (mm) 
during the breeding season (April–June) to represent the environ-
mental conditions for each year and each site. For sampling sites 
in Finland, we obtained weather-station-specific temperature and 
precipitation data from the Finnish Meteorological Institute. We 
interpolated the mean temperature and total precipitation for 
each sampling site by calculating weighted average across all the 
weather stations, the weights being inverse distances from the 
sampling site in question. For sampling sites in France, we obtained 
the monthly temperature data from the SAFRAN meteorological 
model (Quintana-Seguí et al., 2008) that provides high-resolution 
mean, monthly 2-m air temperature data for a 8  km × 8  km grid 
over France each year. We estimated the nearest available tem-
perature data point for each sampling site with straight distance 

F I G U R E  2  A schematic figure representing the predictions of environmental filtering (H1), competition (H2a), heterospecific attraction 
(H2b), and combination of competition and heterospecific attraction (H2c) for the relationship between species' spatiotemporal associations 
(‘STA’) and functional dissimilarity (‘FD’). The pattern is shown as a small figure (each dot represents a species pair) and the slope, 
heteroscedasticity, and requirement of the presence of negative spatiotemporal associations (‘Some STAs are negative’) is presented. For 
instance, the hypothesis (H2c) predicts that the slope in the relationship is null, the heteroscedasticity of the data decreases with decreasing 
functional dissimilarity, and the data include negative spatiotemporal associations. For all hypotheses, it is predicted that the pattern is the 
strongest for species pairs having positive spatial associations. Sign ‘−’ denotes that the hypothesis does not have a particular prediction for 
the pattern feature.
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for deriving mean temperatures. We extracted the French monthly 
precipitation data from WorldClim (Fick & Hijmans, 2017) for each 
sampling site and each year using the R package ‘raster’ (version 
3.4-5; Hijmans, 2020).

2.5  |  Vector autoregressive spatiotemporal model

For estimating species-to-species associations, we used a multivari-
ate spatiotemporal delta model (R package ‘VAST’, version 3.7.11; 
Thorson,  2019; Thorson & Barnett,  2017). VAST uses the latent 
factor structure to jointly model abundances of multiple species 
in space and time, while accounting for spatial and spatiotemporal 
(co)variances in abundance within and between species (Thorson 
et al., 2016). VAST is a dynamic JSDM (JDSDM) that uses a vector 
autoregressive process to model temporal dynamics of covariation 
among species' abundances (Thorson et al.,  2016). The density of 
species cx (x  =  1, …, S, where S is the number of species) in time 
t is conditional upon the density of species cy (x ≠ y) in time t. The 
temporal autoregression among species' abundances is thus mod-
elled indirectly; the density of species cx in time t is dependent on 
the density of the same species in time t − 1, which in turn is condi-
tional upon the density of species cy in time t − 1. Although VAST 
can also model temporal autoregression among species directly (i.e. 
species cx in time t is conditional upon the density of species cy in 
time t − 1) this is computationally demanding and thus feasible for 
only a small number of species. VAST facilitates a realistic modelling 
of spatiotemporal structure of the data as spatial and temporal auto-
correlations are modelled separately (Figure 1 shows schematically 
the difference between spatial and spatiotemporal associations). We 
present the mathematical description and the details in implement-
ing VAST in Appendix 2.

Because discrete distributions for count data easily result in 
model convergence problems, we converted counts of individu-
als to biomass by multiplying the number of observed individu-
als by species-specific body mass estimate derived from delHoyo 
et al. (2014), which facilitated the use of continuous distributions for 
abundances. Consequently, we defined VAST as a Poisson-link delta 
model that estimates the spatial and spatiotemporal covariance 
matrices for species pairs separately for the two linear predictors: 
‘numbers density’ (i.e. number of individuals per unit area) and ‘av-
erage individual biomass’ (i.e. biomass per individual; Thorson, 2017, 
2019). Both linear predictors included a temporally fixed intercept 
and components for spatial and spatiotemporal variation. Zero ob-
servations were included in the analysis. For non-zero observations, 
we specified a gamma probability distribution. In this study, we fo-
cused only on the first component of the delta model, that is, num-
bers density, because the variation in average individual biomass 
covariance matrices was very low. We included two dynamic en-
vironmental covariates to the models (year- and site-specific mean 
breeding-season temperature and total precipitation). Furthermore, 
we assigned all the sampling points within the 20 km × 20 km cell to 
the same location; this equals the grain size of the study. Previous 

studies (Gotelli et al., 2010; Heikkinen et al., 2007) have shown that 
at least a grain size of 10 km × 10 km is robust for detecting biotic 
interactions at a macroecological scale.

We focused on the most common species in each dataset as the 
focal community consists mainly of these species (we included the 
most abundant species representing 80% of the observed individu-
als). Their species-to-species associations can be modelled reliably, 
whereas the abundance vector for rare species consisting mainly of 
zeros, contains only little information. This resulted in altogether 59 
species and different number of species in each dataset (Appendix 3, 
Table  S3). The models converged for eight (Alpine forest, Atlantic 
North farmland, Continental North farmland and forest, Continental 
South farmland and forest, Finland farmland and forest) from the 
total of 14 datasets. For six datasets (Alpine farmland, Atlantic North 
forest, Atlantic South farmland and forest, Mediterranean farmland 
and forest), the models did not converge, most likely due to the com-
plexity of the models. We ran a similar VAST model as described 
above but without the environmental covariates, for the most abun-
dant species representing 90% of the observed individuals, and 
with no autocorrelation structure. However, these two models pro-
duced different spatial and spatiotemporal associations (Appendix 4, 
Figure S4.1), and we do not consider the latter models further.

We converted the spatial and spatiotemporal covariances into 
correlations, referred to as spatial and spatiotemporal associations 
from now on, which ranged from −1 (strongest negative association) 
to 1 (strongest positive association). We classified both spatial and 
spatiotemporal associations as negative (−) or positive (+), according 
to the sign of the association, if the 95% confidence intervals of the 
correlation did not encompass zero. Otherwise, we classified spatial 
and spatiotemporal associations as random (0), meaning that statis-
tically the association did not differ from zero.

2.6  |  Species' functional dissimilarity

For measuring species' functional dissimilarity, we used three 
approaches: (i) morphological dissimilarity, (ii) diet dissimilarity 
and (iii) their combination. First, bird morphology is strongly cor-
related with species' feeding, locomotion and habitat use (Miles 
& Ricklefs,  1984). We included species' log10-transformed body 
weight as an overall indicator of the size of the species, as similar 
body weight in general (Kohli et al., 2018) or for related species 
(Snell Taylor et al., 2020) has been used as a proxy for competition 
potential. In addition, we included four different morphological 
ratios (bill length/body weight1/3, tail length/body weight1/3, tar-
sus length/body weight1/3, wing length/body weight1/3). Second, 
to gain more direct information of whether species would com-
pete for food, we used classifications of species based on their 
diet (at least 10% of diet throughout the breeding season com-
posed of grass, leaves, small plants, etc.; fruits; grains; arthropods; 
invertebrates excepting arthropods; vertebrates excepting fish; 
carrion; and diet throughout the breeding season composed of 
similar amounts of plants and animals). Finally, the combination of 
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morphological and diet dissimilarity may provide more accurate in-
ference on similarity by combining the feeding resources to feed-
ing mechanisms.

To control for the differences in species' habitat preferences 
when analysing the relationship between spatiotemporal associa-
tions and functional dissimilarity, we calculated habitat dissimilar-
ity based on whether species occupy in breeding area the following 
habitats: coniferous forest, deciduous forest, woodland, shrub, sa-
vanna, tundra, grassland, mountain meadows, reed, swamps, des-
ert, freshwater, rocks, human settlements. We extracted all traits 
from Storchová and Hořák  (2018). We used Euclidian distance for 
morphological dissimilarity and gower distance for each of diet dis-
similarity, a combination for morphological and diet dissimilarity (in-
cluding all previously mentioned morphological and diet traits) and 
habitat dissimilarity (function ‘daisy’ from the R package ‘cluster’ ver-
sion 2.1.2; Maechler et al., 2016), ranging from 0 (full similarity) to 1 
(full dissimilarity), and calculated the dissimilarities for each dataset 
separately.

2.7  |  Linking species' spatiotemporal 
associations and dissimilarity

To test our hypotheses, we used generalized least squares (GLS) lin-
ear models (function ‘gls’ from the R package ‘nlme’ version 3.1-153; 
Pinheiro et al.,  2021) fitted with the maximum likelihood method. 
GLS models enable us to model the slope as well as the heterosce-
dasticity predicted by our hypotheses (Figure 2). For each dataset, 
we fitted a GLS model with spatiotemporal association of a species 
pair as a response variable and spatial association group (factor: 
SA+ = positive, SA0 = random, SA− = negative), functional dissimi-
larity and their interaction as explanatory variables. We also added 
habitat dissimilarity as an explanatory variable to control for the dif-
ferences between habitat preferences. Hence, we were able to test 
whether the slope in the relationship between spatiotemporal as-
sociation strength and functional dissimilarity is negative (H1, H2b), 
positive (H2a) or null (H2c), and whether the relationship is strongest 
to species with positive spatial association (H1, H2a–c; Figure 2). To 
test whether the heteroscedasticity in the spatiotemporal associa-
tions decreased with increasing functional dissimilarity (as predicted 
by H2c; Figure 2), we ran (i) a model without any modelling of het-
eroscedasticity and (ii) a model where heteroscedasticity was mod-
elled with the ‘varExp’ variance function (Pinheiro et al., 2021) using 
functional dissimilarity as a variance covariate and allowing different 
heteroscedasticity for the different spatial association groups. This 
procedure was done for the three functional dissimilarity measure 
(morphology, diet, morphology + diet) separately, with one differ-
ence: as diet dissimilarity was based on classifications, the fitted 
values of the model were used as a variance covariate, separately 
or jointly for the three spatial association groups. This resulted al-
together six models, and we used Akaike information criterion (AIC; 
Burnham & Anderson, 2002) to compare whether modelling hetero-
scedasticity and/or dissimilarity measure affected the model fit. We 

acknowledge that the assumptions of GLS models may be violated 
due to the interdependence of the observations.

We implemented VAST using R Statistical Software version 
4.1.11 (R Core Team, 2021) and other analyses using version 4.1.2 
(R Core Team, 2021).

3  |  RESULTS

3.1  |  Spatial and spatiotemporal associations

Spatial associations were most often positive (45%) or random 
(37%), and least often negative (18%). Spatiotemporal associations 
were mostly positive (80%), followed by random (15%), and only 
5% were negative (Figure  3; Appendix  5, Table  S5.1; Appendix  6, 
Figure S6.1–4). Majority of the species pairs had positive spatiotem-
poral associations coupled with a positive (39%) or random (29%) 
spatial association but also birds with negative spatial association 
showed positive spatiotemporal associations (3%–25%, depending 
on the dataset) (Appendix  5, Table  S5.1). Negative spatiotemporal 
associations were due to a few species in those datasets where 
they occurred (e.g. Figure 3b,d,j) and non-existing in other datasets 
(Figure  3h,l). Particularly, negative spatiotemporal associations for 
species with positive spatial association represented 0%–5% of all 
species pairs, depending on the dataset. Although there was some 
variation between the datasets (Appendix 5, Table S5.1), these gen-
eral trends were clear.

3.2  |  Linking spatiotemporal associations to 
species' dissimilarities

For the relationship between spatiotemporal associations and func-
tional dissimilarity, the best GLS model in terms of AIC included a 
combination of morphology and diet as a measure for functional dis-
similarity in five datasets, morphology in two and diet in one (Table 1). 
We found five negative slopes for the relationship between spati-
otemporal associations and functional dissimilarity among species 
with positive spatial associations (Table 1, Figure 4). This fits the pre-
dictions of environmental filtering (H1) and heterospecific attraction 
(H2b) (Figure 2). For the other three datasets, the mean slope was 
zero, as predicted by joint effects of competition and heterospecific 
attraction (H2c). For Continental South farmlands, heteroscedastic-
ity tended to increase with increasing dissimilarity in diet (Table 1). 
However, residual variance was not greatest in the least dissimilar 
species, as predicted by competition and heterospecific attraction 
(H2c), but for species with average dissimilarity (Figure 4d). For other 
datasets, the improvement in model fit due to the inclusion of the 
variance function was small or even reduced (Appendix 7, Table S7.1). 
Thus, we did not find evidence for joint effects of competition and 
heterospecific attraction (H2c). Also, the very few combinations of 
positive spatial and negative spatiotemporal associations refute the 
joint effects of competition and heterospecific attraction (H2c) as 
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F I G U R E  3  Spatial and spatiotemporal associations (‘Correlation’) between bird species' abundances in different biogeographical regions 
and habitats in France: Alpine forest (a, b), Atlantic North farmland (c, d), Continental North farmland (e, f) and forest (g, h), Continental 
South farmland (i, j) and forest (k, l); and in Finland: farmland (m, n) and forest (o, p). Spatial and spatiotemporal associations were estimated 
with a multivariate spatiotemporal model VAST including two environmental covariates. The estimated parameter values for which 95% 
confidence intervals include zero are shown with a black cross. Please see Appendix 6, Figure S6.1–4 for the corresponding figures with 
species' names.
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well as competition (H2a). As expected, species pairs had decreas-
ing spatiotemporal association with increasing habitat dissimilarity 
in several datasets (Table 1).

4  |  DISCUSSION

Despite the broad interest in biotic interactions at large spatial scales 
and the rapid development of the statistical methods to obtain them 
from observational data, it is still unclear whether within-trophic-
level biotic interactions are discernible beyond local scales. Here, we 
presented a novel hypothesis-testing framework based on JDSDMs 
and functional trait similarity to dissect between competition and 
environmental filtering. We demonstrated our framework with in-
teractions within a trophic level at large spatial grain and extent with 
long-term breeding bird data from France and Finland. We found that 
a vast majority of the species had positive spatiotemporal associa-
tions, and these were particularly strong for functionally similar spe-
cies. Our results thus refute the unique prediction by competition 
(i.e. a positive slope between spatiotemporal association and func-
tional dissimilarity) and support the view that environmental filtering 

and positive interactions, such as heterospecific attraction, dominate 
assembly rules within the most common species in the communities.

In general, approximately 80% of species pairs had a positive 
spatiotemporal association: they tended to be abundant at the 
same place and at the same time. Although this aggregation was 
somewhat expected as we focused on the species with a specific 
habitat type (i.e. either in forests and farmlands), we expected that 
controlling for the main environmental variables (temperature and 
precipitation) and biogeographical region would lead to more vari-
ation in spatiotemporal associations. For instance, it could have 
been expected that competition is more intense with areas of 
low environmental stress and decreases in areas with high abiotic 
stress (Cavieres et al., 2014), that is, alpine and boreal regions in 
our case. However, the prevalence of positive spatiotemporal as-
sociations was independent of the biogeographical area or habitat 
type. Moreover, positive spatiotemporal associations were also 
found for birds with negative spatial associations. This suggests 
that the common forest birds have an overall synchrony in their 
abundances, which may result from the variation in the general 
habitat quality, not restricted to specific resources, of forests and 
farmlands.

TA B L E  1  Results from linear models using generalized least squares for the spatiotemporal association and functional dissimilarity 
between bird species pairs in different biogeographical regions and habitats in France and Finland (‘Dataset’). The number of species pairs 
are shown in parentheses. Spatiotemporal association (derived from VAST, see Methods for further explanation) was used as a response 
variable and spatial association group (factor: SA+, SA0, SA−; SA+ used as a baseline ‘Int’), habitat dissimilarity (‘Habitat D’), functional 
dissimilarity (‘Fun D’) and their interaction were used as explanatory variables. For each dataset, six models were run: varying the measure of 
functional dissimilarity (‘Fun D measure’; morphology, diet, morphology & diet) and with and without modelling heteroscedasticity in relation 
to dissimilarity in each group of spatial association [Var(SA+), Var(SA0), Var(SA−)]. The positive sign indicates that residual variance increases 
in a corresponding group with increasing functional dissimilarity. The best model in terms of Akaike information criterion (AIC) is shown in 
the table for each dataset. The signs of parameter estimates are shown (in parentheses if the 95% confidence intervals include zero). The AIC 
values, estimated parameter values and their 95% CIs for all models are shown in Appendix 7, Table S7.1

Dataset Fun D measure Int SA0 SA− Habitat D Fun D SA0:Fun D SA-:Fun D Var(SA+) Var(SA0) Var(SA−)

France Alpine 
forest (n = 136)

Morphology + − − (−) − + + (−) (+) (+)

France Atlantic 
North farmland 
(n = 210)

Morphology + (−) − − − (+) (−) (+) (+) +

France Continental 
North farmland 
(n = 325)

Morphology & 
Diet

+ (−) − − (+) (−) (−)

France Continental 
North forest 
(n = 120)

Morphology & 
Diet

+ (−) (−) (−) − (+) (+)

France Continental 
South farmland 
(n = 351)

Diet + (−) − − (+) (−) (+) − − −

France Continental 
South forest 
(n = 136)

Morphology & 
Diet

+ − (−) − − + (+) (−) (−) −

Finland farmland 
(n = 300)

Morphology & 
Diet

+ (−) (−) − − (+) (+) + (+) +

Finland forest 
(n = 153)

Morphology & 
Diet

+ (−) (−) (−) (−) (−) (+)
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We found not only the dominance of positive spatiotemporal 
associations, but also that the positive spatiotemporal associations 
were the stronger, the more functionally similar the species were. 
Thus, the aggregations were most likely due to different environ-
mental resources which species can efficiently track. However, we 
must bear in mind that the pattern is predicted by both environ-
mental filtering and heterospecific attraction as our approach is not 
able to discern the two mechanisms. Both mechanisms rely on the 
occurrence of the resources. In environmental filtering, individuals 
seek preferred resources irrespective of others, while in heterospe-
cific attraction, individuals are used to locate the shared resources 
more efficiently (Seppänen et al., 2007). Indeed, species for which 
heterospecific attraction has been empirically demonstrated (e.g. 
Parus major and Ficedula hypoleuca; Forsman et al., 2002) showed 
both positive spatial and positive spatiotemporal association 
(PARMAJ and FICHYP in Appendix 6, Figure S6.4c,d). This implies 
that heterospecific attraction may affect abundances of these 
cavity-breeding species also at large spatial and temporal scales. 
In general, the high mobility of birds and factors affecting breeding 

habitat selection (Doligez et al.,  2002; Morinay et al.,  2020) may 
scale up interspecific interactions far beyond the scale of the 
breeding territories.

We did not find evidence for competition: only a few species 
pairs showed negative spatiotemporal association coupled with 
positive spatial associations, and the unique prediction from compe-
tition (i.e. the positive relationship between spatiotemporal associ-
ation and functional dissimilarity) was not fulfilled. Hence, although 
it has been shown that bird species' interactions may scale up to 
regional extent (Belmaker et al., 2015; Gotelli et al., 2010; Heikkinen 
et al., 2007; Mönkkönen et al., 2017; Snell Taylor et al., 2020), our 
results suggest that, for common bird species, the signs of com-
petition, if present, produce patterns that are not discernible from 
those of environmental filtering (Cadotte & Tucker, 2017; Mayfield 
& Levine, 2010). Moreover, the fact that habitat dissimilarity had a 
negative relationship with spatiotemporal associations suggests that 
species sharing habitat preferences tend to be also positively spa-
tiotemporally associated. This supports the view that environmen-
tal factors are more important than competition for covariation in 

F I G U R E  4  The relationship between bird species' spatiotemporal associations and functional dissimilarity in different biogeographical 
regions and habitats in France: Alpine forest (a), Atlantic North farmland (b), Continental North farmland (c) and forest (d), Continental South 
farmland (e) and forest (f); and in Finland: farmland (g) and forest (h). The lines represent fitted linear regressions between spatiotemporal 
association strength and functional dissimilarity, separately for species having positive (red), random (black) and negative (blue) spatial 
associations. If the association is significant, the line is solid, otherwise it is dashed. The horizontal dashed grey line shows where 
spatiotemporal associations are zero, and the dotted grey line shows the average trend within all datasets together. Please note that the 
measure for the functional dissimilarity (morphology, diet, morphology & diet) varies according to which measure gave best fit to the data in 
terms of Akaike information criterion (AIC) (Appendix 7, Table S7.1) and the scale of the x-axes differ.
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bird species abundance at large spatial scales (Dorazio et al., 2015; 
Sandal et al., 2022).

Curiously, we found a pattern which was not predicted a priori 
by either biotic interactions or environmental filtering. This was the 
positive relationship with functional dissimilarity and spatiotemporal 
associations for negative spatial associations, and less strikingly for 
random spatial associations in Alpine forest (Figure 4a). The pattern 
was driven by strong negative spatiotemporal associations between 
functionally similar species (which is expected for these species hav-
ing negative spatial association, and can thus be expected to use dif-
ferent resources) coupled with very strong positive spatiotemporal 
associations with functionally dissimilar species, namely the great 
spotted woodpecker (Dendrocopos major) with the Eurasian blue tit 
(Cyanistes caeruleus), the great tit (Parus major) and the Eurasian black-
cap (Sylvia attricapilla; DENMAJ, PARCAE, PARMAJ and SYLATR in 
Appendix  6, Figure  S6.1a,b). This result can partly stem from the 
complex relationship between the species: as cavity nesters, blue 
tit and great tit benefit from the woodpecker producing the cavities, 
as has been also shown for owl species (Heikkinen et al., 2007). On 
the other hand, the great spotted woodpecker also feeds on other 
species' eggs and nestlings. It is possible that the nest predation 
overturns the benefits of creating cavities, resulting in negative spa-
tial associations between the woodpecker and the other species in 
time t. By contrast, the benefits of cavities made by woodpeckers 
are gained in time t + 1 (or even later) resulting in the strong positive 
spatiotemporal association. The relationship with blackcap as a cup 
nesting species may partly be explained by its habitat preference for 
older deciduous-tree-dominated forests that include nesting trees 
for the great spotted woodpecker and consequently cavities for tits.

Our results only apply to the most abundant species in the com-
munity, these species including the pied flycatcher and great tit, for 
which both competition and heterospecific attraction has been ex-
perimentally shown (Forsman et al., 2007). The focus on common 
species has several advantages. First, in terms of individuals, they 
make up the majority of the community and consequently also the 
majority of the interactions at the level of individuals. Second, their 
species-to-species associations can be more reliably estimated as 
the abundance vectors for the rare species contain little indepen-
dent information (mostly consisted of zeros) about their spatial and 
spatiotemporal associations. Third, focusing on common species 
automatically excludes the species observed in atypical habitats. 
A disadvantage of our approach is that we modelled only a part of 
the species' communities. To detect the possible role of biotic in-
teractions involving rarer species, selecting just a handful of spe-
cies that would be most likely to show interactions (e.g. Heikkinen 
et al., 2007) would provide a fruitful approach. The smaller number 
of species would allow for full use of JDSDMs: estimating the ef-
fect of each species at time t − 1 directly on other species at time 
t (Barraquand et al., 2021; Sebastian-Gonzalez et al., 2010) as well 
as asymmetric species-to-species associations, which are far more 
realistic than symmetric associations (Thorson et al., 2017).

Dynamic abundance data coupled with species' functional 
traits have been suggested to improve the reliability of inferences 

concerning biotic interactions when using large-scale data on ob-
served abundances (Blanchet et al., 2020; Dorazio et al., 2015; Snell 
Taylor et al., 2020; Thorson et al., 2016; Ulrich & Gotelli, 2010). Here, 
we show that our approach of combining species trait information 
with JDSDMs facilitates ecological interpretation of species-to-
species associations based on long-term abundance data. Instead of 
finding evidence for competition, we showed that processes leading 
to species aggregation (mixture between filtering and true social at-
traction) seem to dominate assembly rules within these species. We 
encourage using this approach for assessing assembly rules in other 
study systems for deriving ecological generalizations.
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